انواع المثلثات
من الممكن تصنيف المثلثات تبعا لاطوال اضلاعها كما يلي:
· مثلث متساوي الأضلاع: وهو مثلث أضلاعه متساوية. جميع زوايا المثلث متساوي الاضلاع متساوية أيضا، وقيمتها 60 درجة.
· مثلث متساوي الساقين: وهو مثلث فيه ضلعان متساويان. الزاويتان المقابلتان لهذين الضلعين تكونان متساويتان أيضا.
· مثلث مختلف الأضلاع: وهو مثلث أطوال أضلاعه مختلفة. زوايا هذا المثلث تكون مختلفة القيم أيضا.
· مثلث قائم: له زاوية قياسها 90 درجة (زاوية قائمة)، يدعى الضلع المقابل للزاوية القائمة بالوتر، وهو أطول أضلاع هذا المثلث.
· مثلث منفرج الزاوية: له زاوية قياسها أكبر من 90 درجة (زاوية منفرجة).
· مثلث حاد الزوايا: كل زواياه قياسها أصغر من 90 درجة (زاوية حادة).
يقال عن مثلثين انهما متشابهين اذا كانت الزوايا المتقابلة من كل منهما متساوية، اي عندما ينتج احدهما عن الاخر بتكبيره او تصغيره.
واحدة من النظريات الاساسية في المثلثات هي نظرية فيثاغورث و التي تنص على انه في المثلث القائم، مربع طول الوتر (ا َ) يساوي الى مجموع مربعي طولي الضلعين القائمين (ب َ، ج َ)، اي:
د َ² = ب َ² + ج َ²
مما يعني ان معرفة طولي ضلعين من المثلث القائم، كاف لمعرفة طول الضلع الثالث:
من الممكن تعميم نظرية فيثاغورث لتشمل اي مثلث عبر قانون التجيب:
د َ² = ب َ² + ج َ² - 2 ب َ ج َ تجب د
و هو صحيح من اجل كل المثلثات حتى و لو لم تكن د قائمة.
مساحة المثلث
تعطى مساحة المثلث بالقانون:
سط = ق × ع / 2
حيث ان ق هي طول احدى اضلاع المثلث (القاعدة)، و ع هو طول العمود النازل على هذا الضلع من الرأس المقابل له (الارتفاع).
من الممكن البرهان على ذلك من خلال الشكل التالي:
